
GP1F361T/GP1F361R Optical Mini-Jack for Digital Audio Equipment

Features

- 1. Electric and optical signal compatible design (Three kinds of terminals are integrated into a single unit.)
- 2. Compact design with small jack compatible mini-plug (Less than 1/2 in volume of GP1F32T/R)
- 3. OPIC type (Direct interface to microcomputer of the 1/0 signals) (High fidelity real sound reproduction)
- 4. High speed data transmission Signal transmission speed MAX. 8Mbps (NRZ signal)
- 5. Low voltage drive (2.7V to 3.6 V)

Applications

- 1. MD, DCC
- 2. Portable CD, DAT

■ Absolute Maximum Ratings

GPI F361T/GPI F361R (Photoelectric conversion element)

Parameter	Symbol Rating		Unit
Supply voltage	Vcc	-0.5 to +7.0	V
output current (GP1F361R)	Іон	2 (source current)	mA
output current (GP1F361A)	Iol	10 (sink current)	mA
Input voltage (GP1F361T)	V,,	-0.5 to Vcc+5.0	V
Operating temperature	Торг	-20 to +70	,c
Storage temperature	T_{stg}	-30 to +80	$^{\circ}$ C
*'Soldering temperature	T_{sol}	260	C

GP1 F361T/GP1F361 R (Jack)

Parameter	Symbol	Rating	Unit
Total power dissipation	P,",	D. C.12V, 1A	
Isolation voltage	V _{ISO}	A.C. 500V _{rms} (For 1min.)	
Operating temperature	T opr	-20 to 70	$^{\circ}\! \mathbb{C}$
Storage temperature	T_{stg}	- 30 to 80	"C
*1 Soldering temperature	T_{sol}	260	${\mathbb C}$

^{*1 5}s/time up **t0** 2 times

■ Recommended Operating Conditions

GP1F361T

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	$ m V_{CC}$	2.7	3.0	3.6	v
Operating transfer rate	T	_	_	8	Mbps

GP1F361R

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	V_{CC}	2,7	3.()	5.25	V
Operating transfer rate	T	().1	_	8	Mbps
Receiver input optical power level	P_C	-24.0	-	-14.5	dBm

■ Electro-optical Characteristics

GP1 F361T (Photoelectric conversion element)

 $(Ta = 25^{\circ}C)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak emission wavelength	λP		630	660	690	nm
Optical power output couple with fiber	Pc	Refer to Fig. 1	-21	-17	-15	rlBm
Supply current	Icc	Refer to Fig. 2		8	12	mA
High level input voltage	V_{iH}	Refer to Fig. 2	2.1	_		V
Low level input voltage	V_{iL}	Refer to Fig. 2	_		0.8	V
Low→High delay time	tplh	Refer to Fig. 3		_	180	ns
High-, Low delay time	tpHL	Refer to Fig. 3	_		180	ns
Pulse width distortion	Atw	Refer to Fig. 3	-30		+30	ns
Jitter	∆tj	Refer to Fig. 3	_	1	30	11s

Fiber Optics

GP1F361R (Photoelectric conversion element)

 $(Ta = 25^{\circ}C)$

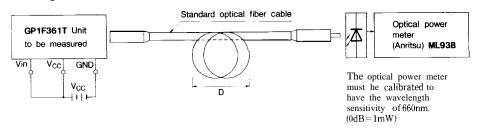
Par	ameter	Symbol	Conditions	MIN.	TYP.	MAX	Unit
Peak sensit wavelength	ivity	λ P			700	_	nm
Supply curi	rent	Icc	Refer to Fig. 4	_	12	15	mA
High level	output voltage	Voh	Refer to Fig. 5	2.1	_		V
Low level	output voltage	V_{OL}	Refer to Fig. 5	_	_	0.4	v
Rise time		tr	Refer to Fig. 5	_	17	30	ns
Fall time		tr	Refer to Fig. 5		5	30	ns
Low→High	delay time	tрын	Refer to Fig. 5	_	_	180	ns
High→Low	delay time	tphL	Refer to Fig. 5	_	_	180	ns
Pulse width	distortion	∆tw	Refer to Fig. 5	– 30	-	+ 3 0	n s
T'	$P_{C} = -14.5 dBm$	۸ 4:	Defen to Eig 6		1	30	ns
Jitter	$P_C = -24dBm$	△tj	Refer to Fig. 6	_	_	30	ns

■ Mechanical and Electrica Characteristics

GP1 F361T/GP1F361R (Jack)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Insertion force, Withdrawal force	FPP	*2	5		35	N
Contact resistance	Rcon	*3	_	_	30	mΩ
Isolation resistance	Riso	D.C. 500V, 1min.	100	_	_	МΩ

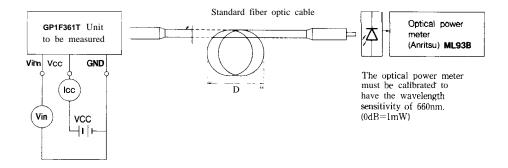
Note) This jack is designed for applicable to \$\phi\$ 3.5 compact single head plug (EIAJRC-6701A).


*2 Measuring method of insertion force and withdrawal force.

Insertion and withdrawal force shall be measured after inserting and withdrawing 3 times by using EIAJ RC-6701A standard plug for test.

*3 Measuring method of contact resistance.

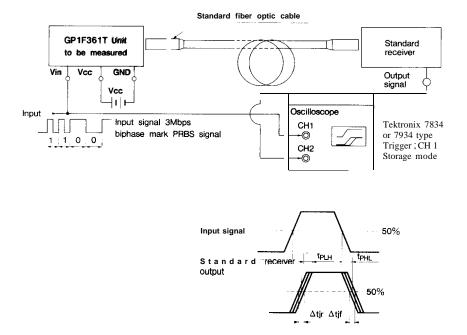
About movable contact terminal and make contacts, it measures at 100mA or less and 1000H z at the condition of inserting EIAJ 6701A standard plug for test.


Fig. 1 Measuring Method Optical Output Coupling Fiber

Note) (1) V_{CC} : $3.0V \pm 0.05V$ (State of operating)

(2) To bundle up the standard fiber optic cable, make it into a loop with the diameter D= 10cm or more (The standard fiber optic cable will be specified elsewhere.)

Fig. 2 Measuring Method of Input Voltage and Supply Current



Input conditions and judgement method

	Conditions	Judgement method
_	V _{in} =2.1V or more	$-21 \le P_C \le -15 dBm$, $I_{CC} = 12 mA$ or less
	$V_{,n} = 0.8V$ or less	$P_C \le -36 dBm$, $I_{CC} = 12 mA$ or less

Note) $V_{CC} = 3.() \pm 0.05V$ (State of operating)

Fig. 3 Measuring Method of Pulse Response and Jitter

Test item	Symbol	Test condition
Low→High pulse delay time	tPLH	
High→Low pulse delay time	tрні	
Pulse width distortion	∆tw	$\triangle tw = t_{PHL} - t_{PLH}$
Low→High Jitter	∆tjr	Set the trigger on the rise of input signal to measure the jitter of the rise of output
High→ Low Jitter	∆tjf	Set the trigger on the fall of input signal to measure the jitter of the fall of output

- Notes (1) The waveform write time shall be 4 seconds. But do not allow the waveform to be distorted by increasing the brightness too much.
 - (2) $V_{CC} = 3.0 \pm 0.05 \text{V}$ (State of operating)
 - (3) The probe for the oscilloscope must be more than $1M \Omega$ and less than 10PF.

Fig. 4 supply currant

Input	conditions	Pleasuring method
Supply voltage	$V_{CC} = 3.0 \pm 0.05 V$	
Optical output COUPI ing fiber	$P_C = -14.5 dBm$	Measured on an ammeter (DC average amperage)
Standard transmitter input signal	6Mbps N RZ Duty50 % or 3Mbps biphase mark PRBS signal	

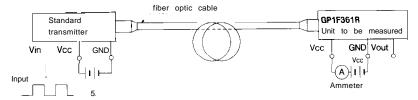
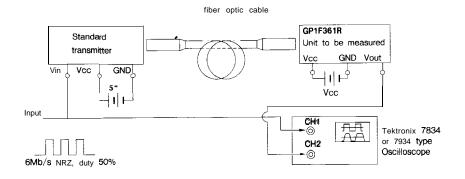
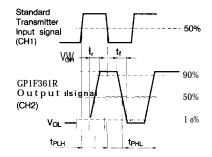
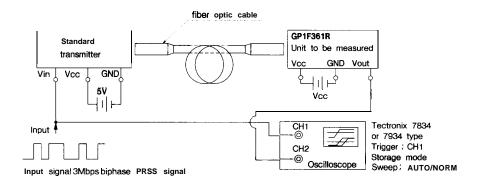
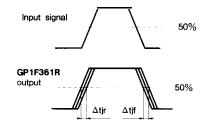




Fig. 5 Measuring Method of Output Voltage and Pulse Response

Test item

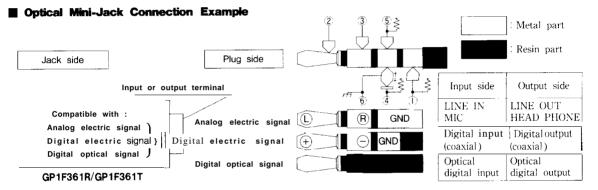

Test item	Svmbol
Low→High pulse delay time	tplh
High→ Low pulse delay time	tphL
Rise time	tr
Fall time	t f
Pulse width distortion △tw tphl—tplh	∆tw
High level output voltage	Vон
Low level output voltage	Voi



Notes (1) $V_{CC} = 3.0 \pm 0.05V$ (State of operating)

- (2) The fiber coupling light output set at -14.5dBm/-24.1)dBm.
- (3) The probe for the oscilloscope must be more than $1M\Omega$ and less than 10pF.
- (4) The output (H/L level) of **GP1F361R** are not fixed constantly when it receivers the disturbing light (including DC light, no input light) less than 0.1Mbps.

Fig. 6 Measuring Method of Jitter



Test item

Test item	Symbol	Test condition
Low • High jitter	∆tjr	Set the trigger on the rise of input signal to measure the jitter of the rise of output
High→Low jitter	∆tjf	Set the trigger on the fall of input signal to measure the jitter uf the fall of output

Notes (1) The fiber coupling light output set at 14.5dBm/ 24.0dBm

- (2) The waveform write time shall be 3 seconds But do not allow the waveform to be distorted by increasing the brightness too much.
- (3) $V_{CC} = 3.0 \pm 0.05 \text{V}$ (State of operating)
- (4) The probe fur the oscilloscope must be more than $1M \Omega$ and less than 10 pF.

Kinds of plug	Output		
	4)	(5)	1
Analog electricity	L.	L	L
Digital electricity	L	L	Н
Digital optics	L	Н	Н
No plug	Н	Н	Н

• Please refer to the chapter "Precautions for Use." (Page 78 to 93).